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The starting-point for this paper lies in some results obtained by Proudman & Reid (1954) for
isotropic turbulence with zero fourth-order cumulants. They showed in that case that the quantity

—
u2f r*f(r) dr is not a dynamical invariant and that the first time derivative of the triple correlation
0

k(r) is of order r—* when r is large. The customary assumption that all velocity cumulants in
homogeneous turbulence are exponentially small for large separations, and the consequent results,
about the large-scale structure of the motion and about the final period of decay of the turbulence,
are thus suspect, and we have redeveloped the whole subject ab initio.
o The fallacy in the old assumption of exponentially small cumulants can be ascribed to the
action of pressure forces, which are local in their effect but which have values determined
instantaneously by the whole velocity field. If at some initial instant a finite region only of an
infinite fluid is in motion, at subsequent instants pressure forces generate a surrounding irrotational
velocity distribution that falls off as some integral power of the distance from the central region.
Likewise, the action of pressure forces in homogeneous turbulence is to ensure the development of
algebraic asymptotic forms of velocity cumulants, the analogue of the finite region of initial motion
being a volume of the fluid over which the vorticity is effectively correlated. However, an essential
difference between the two cases is that in homogeneous turbulence pressure forces also build up
long-range statistical connexions in the vorticity distribution.

Having recognized why the old assumption is wrong, it is necessary to consider what kinds of
asymptotic forms of velocity cumulants (for large separation) are dynamically persistent, and to
consider in particular what asymptotic forms are likely to occur when homogeneous turbulence is
generated in the usual way by setting a regular array of rods across a uniform stream. We have
been able to find only one kind of large-scale structure that is unchanged by dynamical action, and
this is also the kind of large-scale structure that develops from a plausibly idealized initial condition
representing the effect of the grid on the stream. This initial condition, according to the hypothesis
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370 G. K. BATCHELOR AND I. PROUDMAN ON THE

on which the positive results of this paper are based, is that there is a virtual origin in time at which
all integral moments of cumulants of the velocity field converge. The important consequence of
this hypothesis is that the effect of pressure forces is subsequently to develop asymptotic forms
that are integral power-laws.

It is shown, from a consideration of all the time derivatives at the initial instant, that the velocity

covariance u,%; in general becomes of order r—3 when the separation 7 is large, the leading term
[} g bl

having the property that it makes no contribution to the vorticity covariance w;}, which becomes
of order r~8. This semi-irrotational property of the asymptotic form, which arises from the fact
that pressure forces act only indirectly on the vorticity, allows the asymptotic form of u,u] to be
determined explicitly. By methods that are new in turbulence theory and that involve a good deal
of tensor manipulation, it is found that

r// \ A A

A A

p
A
j A\

7 _1C 8. v2 _33,) 8. V2 — —?i—)—afr—+0(r‘6)
Uity =2 Cpgmn\Op V" — Or,or, ( Ja ar;0r,) Or,ar, ’

when 7 is large, where the coefficient C,,,, is related to the fourth integral moment of w,; in
a known way. There is a corresponding expression for the leading term in the spectrum tensor at
small wave-numbers, which is now not analytic. The spectrum function giving the distribution
of energy with respect to wave-number magnitude % is in general of the form

E(k) = Ck*+ O (k5 In k),
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when £ is small.
Corresponding expressions are found for the asymptotic forms of the various terms occurring

in the dynamical equation giving the rate of change of u;u]. Both the inertia and pressure
terms in this equation are found to be of order 75, and as a consequence the coefficient C,,,,,

(and likewise C) is not a dynamical invariant. It is shown that the integral |u;u;r,,r,dr (which
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exists, despite the apparent logarithmic divergence at large r) is uniquely related to Cpqmns and it
too varies during the decay, contrary to past belief.

The final period of decay is examined afresh, and it is found that the energy then varies as
(¢—1,)~%, which is also the result found experimentally; the power (—$) arises from the fact that
the spectrum tensor is of order 4% when the wave-number % is small, and is unaffected by the non-

analytic character of that leading term. The covariance u;4; does not have a simple form in the
final period; it is determined by the parameter f u;ur,,1,dr alone, and this parameter depends on

the previous history of the decay in a complicated way. It is rather puzzling that measurements
indicate that the longitudinal correlation coefficient has a simple Gaussian form in the final period
of decay, as would be the case for an analytic spectrum. We suggest this observation may be true only
for turbulence of very low initial Reynolds number, for which the non-analytic part of the spectrum
tensor has little time to develop.

Finally, the results are specialized to correspond to turbulence which is completely isotropic.
For reasons related to the symmetry, ;4] is now no larger than O(r~%) when r is large (we have been
unable to determine the exact order), and the leading term in the spectrum tensor, of order £2, is
analytic. As suggested by Proudman & Reid’s work, the triple correlation k(r) is of order 7—* when
r is large and
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c%{gﬁ f :r"f(r) dr} — ()? lim r ().

1. THE BACKGROUND TO THE INVESTIGATION

An aspect of homogeneous turbulence which has attracted much attention in theoretical
research in the subject is the motion of those components that are associated with very large
length-scales. This attraction has been due largely to the apparent simplicity of the problem
and to the possibility of making the dynamical theory unusually complete. Nevertheless,
the dynamical results have not been without interest in themselves. For, according to the
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theory, although the large-scale components play little part in the general mechanics of
the turbulence when the Reynolds number is high, they dominate the motion in the last
stages of decay when the turbulent energy has been reduced to a low level by viscous dissipa-
tion. The theory has predicted in some detail the properties of the turbulence in this final
period of decay, and it has been possible to compare the results of experiments on homo-
geneous turbulence with predictions whose basis is entirely theoretical. The satisfactory
outcome of this comparison is now common knowledge.

Since, however, we shall be concerned in this paper with a re-examination of the theo-
retical ideas, it will be useful to recall the developments mentioned above in somewhat
greater detail. A unified treatment of the relevant theory has been given by Batchelor (1953),
and it will suffice here to quote the main results in a form suited to our subsequent analysis.
These concern the velocity covariance

R(r) = u(X) uj(x+71),

where u(x) is the velocity at the point X, and the tensors which govern its dynamical
behaviour, namely Sz’jk( 1) —1,(x) m (X) 4, (X T)

and F(r) = p(X) y(x+r1),

where p(X) is the ratio of the pressure at the point X to the uniform density of the fluid.
Now, the kinematical assumption on which the theory has hitherto been based is that
integral moments of each of the above tensors, such as

ffmrn ... (N factors) R;(r)dr,

where the integration is over all values of r, converge for all values of N occurring in the
analysis. Actually, the assumption has been made only for values of N up to, and including,
three, but the central idea has always been that the relevant tensors are exponentially small
at large values of r = | r | ; otherwise, there would be little @ priori justification for assuming
the existence of particular integral moments. Since, at large values of 7, the tensors like
R;(r) measure the statistical correlation between conditions at widely separated points in
the turbulence, and since the devices ordinarily used to generate homogeneous turbulence
have a structure that is periodic, with finite wavelength, it has usually been believed that
there is no great loss of generality in making such an assumption.* It then follows from the
equations governing the homogeneous turbulent motion of an incompressible fluid that

fR,.j(r) dr = 0= frmRU(r) dr, (1-1)
and O [, r.R (r)dr =0 (1-2)
0t m'n=ry *

It is customary to express these results in terms of the spectrum tensor
, 1 _
@y (K) = <5 fR,.j(r) e-terdr, (1-3)
* Birkhoff (1954) has recently recorded the opinion that convergence of integral moments of R;;(r) cannot

generally be expected.
46-2
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Thus, for small values of £ = |k |,
1
O, (k) = _4—7,.2Lz'jmnkmkn+ O(k%), (1-4)
1
where Lym= 4 fr,,, r,Ry(r) dr, (1-5)

and the first few terms of the Taylor expansion are justified by the existence of the corre-
sponding integral moments of R;;(r). The way in which the second-order integral moment
of R;;(r) describes the motion of the largest-scale components is then more clear, and the
result (1-2) states that the asymptotic form of the spectrum function at small £ is constant
during the entire life history of the turbulence. In the case of isotropic turbulence, the result
(1-2) is due to Loitsiansky (1939), and the corresponding spectrum result to Lin (1947). The
general results for homogeneous turbulence are due to Batchelor (1949).

The further predictions of the theory are all concerned with conditions in the final period
of decay when the intensity of turbulence is sufficiently small to permit the total neglect of
inertia and pressure forces. The dynamical equation for ®;(k) is then

0D, (k

gt( )=—2vk2(I)ij(k), (1-6)
and the assumption that the first three integral moments of R;;(r) exist permits the deriva-
tion of the complete asymptotic solutions for the velocity covariance and the spectrum

tensor. Thus, one finds (see Batchelor 1953) that, as ¢ —#,—~ oo,

Y,

L
N ~ ijmn . n —r2/222 .
sz(r) (27’,)%/15 l:&nn /12 ]C ) (l 7)

where A2 = 4v(t—t,y),

and the constant of integration ¢, is the virtual origin in time of the final period of decay.
This is the prediction that compares so favourably with the results of experiments, both in
the distribution of the covariance as a function of r, and in the temporal decay of the energy
tensor ;(X) u;(X). The assumption that the integral moments of S;;,(r) and P(r) converge,
is not used in deriving (1-7), but is needed for the more powerful result (1-2) concerning the
earlier stages of decay, on which the experimental evidence cited provides no check.

However, indirect support for the result (1-2) follows from a more refined argument
about conditions in the final period of decay. For, according to (1-2), the tensor coefficient
in (1-7) is the same as that which describes the motion of the largest eddies in the early
stages of decay. It follows that a field of homogeneous turbulence in which, initially, the
largest eddies are anisotropic, but which is otherwise substantially isotropic, will ultimately
become markedly anisotropic when the largest eddies are all that remain. Moreover,
anisotropy in the largest eddies is normally to be expected when the mechanism for
generating the turbulence has any directional properties, even though the mechanical
processes might distribute the bulk of the energy isotropically. In the case of wind-tunnel
turbulence, therefore, where the customary bi-plane grid may be regarded as an axi-
symmetric generator of approximately isotropic turbulence, the fact that Batchelor &
Stewart (1950) have observed the above tendency to anisotropy provides a partial verifica-
tion of the prediction (1-2).
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However, it must be stressed that no direct measurements of the decay of L;;,,, have yet
been made. Indeed, from the many measurements of the velocity covariance that have
been made, there is no real indication that the integral in question converges (i.e. even in
a practical numerical sense; the computations of Stewart & Townsend (1951), for instance,
suggest that at least 40 9, of the contributions to the integral arise from values of r greater
than those for which measurements have been made). Nevertheless, the satisfactory nature
of the remaining experimental evidence and the apparent generality of the theoretical
assumptions have together been responsible for the common feeling that the analysis of the
large-scale components represents one of the most surely established parts of the theory of
homogeneous turbulence.

The recent work of Proudman & Reid (1954), however, has brought to light a serious
flaw in the theory. For isotropic turbulence, they found that, at an instant at which the
integral moments of R;;(r) and S;,(r) converge, the rate of change of S;;(r) is in general of
order r~* for large values of 7. It follows that perhaps the first, and certainly the second and
all higher, order integral moments of §;;(r) diverge at subsequent instants, and that some
of the assumptions underlying the theory described above are invalid. Actually, Proudman
& Reid only show rigorously that the coefficient of 7~ is non-zero for the special case in
which fourth-order cumulants of the joint probability distribution of the velocity vector at
three points in space vanish, but they present plausible arguments for the validity of the
result in the general case of an arbitrary probability distribution. In any case, since the
basic assumptions of the earlier work were strictly kinematical, the invalidity of these
assumptions for a kinematically possible probability distribution like one with zero fourth-
order cumulants is itself sufficiently disturbing to warrant further investigation.

Proudman & Reid go on to point out some of the changes in the theory that are necessi-
tated by the new-found behaviour of S, (r) at large values of 7. In isotropic turbulence, for
instance, it appears that, if the integral moments of R;;(r) are still assumed to exist (although
there is now less justification for such an assumption), no further inconsistencies arise pro-
vided the integral L, is allowed to have a finite rate of change during decay. More
precisely, if #2(r) and («2)}k(r) are the double and triple velocity correlation functions
usually denoted by these symbols, the scalar equation defining the rate of change of the

isotropic tensor L;,,, is

2 f @rf(r) dr = (&)} lim rk(r). (1-8)

The right-hand side of (1-8) arises entirely from inertia forces, and since these are very small
in the final period of decay the only significant change represented by (1-8) concerns the
decay of L, during the earlier stages when the Reynolds number is not small. As has
already been pointed out, this is an aspect of the theory that has never been verified or
disproved experimentally.

The general case of homogeneous turbulence is also considered briefly by Proudman
& Reid, who suggest that, in this case, an analytic expansion of the form (1-4) is unlikely to
be valid for all ¢, for dynamical reasons. In other words, they cast doubt on the convergence
of the integral L;,,,. In actual fact, of course, the discovery that S, (r) = O(r~*) for large
values of r immediately suggests that statistical connexions between al/ quantities at widely
separated points in homogeneous (including isotropic) turbulence are much greater than


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

374 G. K. BATCHELOR AND I. PROUDMAN ON THE

has hitherto been supposed. If this is the case, then the theoretical basis of many of the
predictions that apparently have been confirmed by experiments is removed. We therefore
felt that an entirely new examination of the problem was necessary and that all previous
assumptions and theoretical results should be put into the melting-pot. Thus, our aim in
this paper is to reconsider the large-scale structure of homogeneous turbulence in general,
and in particular to account for the experimental data about turbulence generated by a grid
of rods in a wind tunnel.

2. THE NATURE OF THE PROBLEM

Proudman & Reid’s work suggests, and analysis presented in later sections shows
definitely, that the important point overlooked in previous investigations is the severe
restriction imposed on the large-scale kinematical structure of homogeneous turbulence by
the dynamical processes taking place. Proudman & Reid encounter this restriction only in
so far as it affects the tensor §;;,(r), and we now have to examine its effect on all mean values
required in the analytical description of the large-scale motion. For the time being, the
problem may be regarded as consisting of two parts, namely, that of finding general large-
scale kinematical structures which can persist in time (through being unchanged by
dynamical processes), and that of finding the particular structure that is relevant to wind-
tunnel turbulence. Actually, we have been able to find a solution of the former problem
only by making a direct appeal to practical methods of generating turbulence in a wind-
tunnel (as described in §§ 3 and 4), but it is possible, and useful, to consider in isolation
several aspects of the general problem, and this we do in the present section.

Some indication of the nature of the dynamical restriction on the large-scale structure of
homogeneous turbulence may be obtained by considering the mechanics of a simpler type
of flow of an unbounded fluid in which |u(x) |+ 0 as x = | X |- c0. Such a motion is not
strictly relevant to the problem of homogeneous turbulence, in which the velocity and all
its derivatives extend throughout all space in a statistically uniform manner. But there is,
nevertheless, a clear (though not necessarily close) analogy between the volume over which
a quantity is correlated with itself in homogeneous turbulence, and the region over which
this quantity is appreciably different from zero in the type of flow defined above. In this
way, the above flow may be regarded as corresponding to the motion of a single ‘eddy’ in
homogeneous turbulence, and an examination of its properties at large values of x may be
expected to yield some information concerning the large-scale structure of homogeneous
turbulence. ,

With this analogy in mind, the aspect of the flow in which we are primarily interested is
the restriction that the dynamical processes impose on the orders of magnitude of the
velocity and its derivatives at large values of . In particular, we are interested in the
dynamical significance of the difference between flows in which these quantities are
exponentially and algebraically small. For, the difference between the corresponding forms
of the correlation tensors at large values of 7 in homogeneous turbulence represents the
essential difference between the assumptions of the older theory and the new suggestions
mentioned in §1.

We consider first the distribution of acceleration in a flow at an instant at which the
distribution of velocity is such that |u(X) |0 exponentially rapidly as x— co. In the
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absence of external forces, the forces producing this acceleration are the viscous stresses and
pressure gradients. The viscous stresses at any point depend only on the local velocity dis-
tribution and are therefore exponentially small at large values of x. The pressure distribu-
tion in the neighbourhood of any point, on the other hand, is built up of contributions that
are communicated to that neighbourhood from all parts of the fluid. Thus, in an unbounded
fluid, the pressure is given by

1 [Pu)n(x) dx |
PX)=gm) " oxax,  |x—x|’ (1)

which depends upon the entire velocity distribution. At large values of x, the integral in
(2:1) may be expanded as an infinite series of solid harmonics, the coefficients of which are
integral moments of the distribution of 9%,(X")u;(x") /0x; dx;. All these integrals converge at
the instant under consideration, so that the expansion is justified. Thus, in tensor notation,

p0) ~ L A dx'— a (3)frrace) dx’+%£}—c} () frmdmyax+.., (29

i X,

~ for large values of x, where A (x") stands for (4m) =1 9%,(X") u;(x’) /0x; 0x;. In general, therefore,
the pressure falls off as an integral power of x~1 at large values of x, and the pressure gradients
produce a distribution of acceleration with the same property. Hence a flow in which the
velocity is exponentially small at large values of x is in general possible only instantaneously,
the subsequent asymptotic form of the velocity being an integral power-law in x~1.

It may be the case, of course, that all coefficients in the expansion (2-2) vanish at the
initial instant. Under such circumstances, the initial acceleration would also be exponenti-
ally small at large values of x. But, by virtue of the integral nature of the expression (2-1)
for the pressure, any assumption which involves the idea that this situation persists for all
time clearly imposes a severe dynamical restriction on the motion asa whole. It is essentially
for this reason that fluid flows in which the velocity is exponentially small at large values
of x are dynamically very special, and appear to be almost entirely restricted to problems
of parallel flow and the closely analogous rotary motions. '

The relevance of these remarks to our problem in homogeneous turbulence is clear. They
strongly suggest that if homogeneous turbulence is initially such that statistical connexions
over large distances are exponentially small, an effect of the fluctuating pressure field is to
establish power-law forms of velocity correlation tensors at large values of . Support for
this suggestion is provided by the fact that the origin of the term in ~*in Proudman & Reid’s
analysis of S, (r) may be traced solely to the pressure term in the Navier—Stokes equation.
The suggestion also readily explains why Proudman & Reid did not find a power-law form
of the velocity covariance R;(r) in isotropic turbulence. The rate of change of R;(r)
involves the pressure explicitly only in the form of the pressure-velocity covariance B(r),
and in isotropic turbulence this tensor vanishes identically as a result of the symmetry and
continuity conditions.

It is also of interest to examine the effect of the dynamical processes on the large-scale
structure of the vorticity distribution. Returning to the simpler type of flow discussed above,
we consider the distribution of the rate of change of the vorticity w (X) at an instant at which
| w(x) | is assumed to be exponentially small at large values of x, although | u(x) | may be
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(and, according to the above discussion, will be, in general) only algebraically small. Now.
in the dynamical equation for the vorticity, namely

ﬂa_a;i = ij—:; —ujZ—Z+VV2wZ-, (2-38;
the presence of the velocity vector ensures that the rate of change of vorticity at any point
depends on the entire vorticity distribution, by virtue of the kinematical result
1 dx’
u(x) = curlz;rfw(x’) X —x|

In this respect, the dynamical equations for the vorticity and velocity are similar. The
important difference lies in the fact that every term on the right side of (2-3) involves the
local vorticity in a multiplicative manner, so that the local conditions place a limit on the
order of magnitude of the rate of change of vorticity. Thus, at the instant under considera-
tion, the rate of change of vorticity is exponentially small at large values of x, and the same
is obviously true of time derivatives of w(x) of all orders. Hence the assumption that the
vorticity is exponentially small at large values of x imposes a very weak dynamical restriction
on the motion, which amounts to little more than a specification of suitable initial conditions.
Indeed, vorticity distributions with this particular property are quite common, and include
most of the text-book examples of the motion of real fluids in an infinite region without
boundaries. The motion at large values of x in such cases is, of course, irrotational, and it is
tempting to surmise that the velocity correlation tensors in homogeneous turbulence will
have a corresponding irrotational structure at large values of 7 in cases in which the vorticity
correlations are initially exponentially small. In this respect, however, the analogy appears
to be very imperfect, as we shall see in §4.

Before leaving this simplified problem, it is worth noting that, in the absence of external
forces, the total linear momentum of the flow must be constant, and that the existence of
this dynamical invariant restricts the changes in the asymptotic form of the velocity dis-
tribution that can be brought about by pressure forces. The leading term in the expansion
of an irrotational motion at large values of x is the dipole field

2
u(x) =252 (1), (24
where the coefficient M; is related to the total linear momentum of the flow as follows:
M, — ifu.(x) dx.
8m)

J

In the case in which | u(x) | is exponentially small at large values of x at the initial instant,
M, is initially zero, and remains zero, and the asymptotic form of #(x) that is built up by
pressure forces is such that | u(x) | = o(x~3) permanently.

The analogous concept in homogeneous turbulence seems to be the the ‘linear momentum
of an eddy’, of which a suitable measure is the mean square momentum per unit volume of
fluid, defined by

.1 N et
M, =Ilg£1°7fui(x) dxfuj(x ) dx

= |R;(r)dr. (2-5)
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The volume integral in (2-5) is determined, in a manner analogous to (2-4), by the behaviour
of R;;(r) at large values of 7; for the continuity condition enables the integral to be expressed
in the form

f Ry(r)dr =lim [ 1R(r)ds,,

R—>w Jr=R
where the integration is over a sphere of large radius R, so that the integral is determined by

lim 73R;(r). (2-6)
P>
From the analogy with linear momentum of a velocity field which vanishes at infinity, we
might expect M;; to be a dynamical invariant of the turbulence, and we shall see later that
this is indeed the case, at any rate in the circumstances described in §3 in which A4; is equal
to zero. Thus when the initial conditions are such that M;; vanishes we should expect the
large-scale structure to have the property

Ry(r) = o(r~?)

for large values of r, permanently, and later work will confirm this.

The suggestive analogies presented in this section have made clear the nature of the
problem before us. We have to examine both the conditions under which homogeneous
turbulence is created and the subsequent effect of pressure forces. The former of these
problems is considered in the following section, and then the effect of pressure forces is taken
up in §4. Sections 5 and 6 are concerned with the properties of the resulting large-scale
structure of the turbulence.

3. THE HYPOTHESIS OF CONVERGENT INTEGRAL MOMENTS AT AN INITIAL INSTANT

We have explained, in §2, how many of the previously published results about the large-
scale structure of homogeneous turbulence may be in error through being based on the
assumption that integral moments of the velocity correlations converge. In its widest form
this assumption, now seen not to be valid generally, would state that all integral moments
of all cumulants* of the velocity distribution converge. The intuitive idea behind the
assumption was that practical methods of generating homogeneous turbulence, such as the
usual method of passing a stream of fluid through a regular array of rods, seem unlikely to
be able to produce a turbulent motion with statistical connexions persisting over distances
large compared with the length characteristic of the array of rods. It must be conceded that,
despite its new-found lack of validity, some aspects of this idea have a certain plausibility,
and the new hypothesis to be put forward here is in fact a modification of the old one.

Whatever the nature of the method of generating the homogeneous turbulence, we can
regard the turbulence as having had its origin in the instability of some laminar flow system
and in the growth of small velocity fluctuations superimposed on the laminar flow. Now, itis

* A single example will make clear the meaning of a cumulant of the velocity distribution; the general
fourth-order cumulant is defined as

U Uy U Uy — Uy U Uy, — U U Uy, — U0 U U
We choose to talk about cumulants rather than mean values of velocity products, because the former

approach zero when the distance between any two of the points at which the velocities are taken becomes
large, whereas the latter may not do so.

47 : VoL. 248. A.
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widely believed (although anything in the nature of a rigorous proof is not available) that
the statistical properties of a field of turbulence depend only on the boundary conditions
appropriate to the laminar flow from which it develops, and not at all on the properties of
the superimposed velocity fluctuations (provided that they are small) ; the role of the super-
imposed fluctuations seems to be simply to act as a trigger for the instability, and the
turbulence develops its own statistical properties through the inertial interaction of the
various Fourier components of the motion. (The implication for the case of homogeneous
turbulence generated by a grid is that the statistical properties of the motion depend only on
the shape of the grid of rods and not on the properties of small velocity fluctuations super-
imposed on the uniform incident stream.*) We know of no experimental evidence that
conflicts with this idea and there is of course a great deal of evidence in its favour (for
instance, the properties of fully-developed turbulent flow in a pipe seem to be independent
of conditions in the inlet length). According to this notion of statistical uniqueness of the
turbulence, the statistical properties of the fluctuation superimposed on the laminar flow
can be chosen arbitrarily, and in particular can be chosen to be such that all integral
moments of cumulants of the small fluctuating velocity converge. (It is clear from the
remarks of § 2 that when the intensity of homogeneous turbulence is small, and inertia and
pressure forces are negligible, convergence of integral moments at any one instant implies
convergence at subsequent instants, so that this property of the superimposed disturbance is
not transitory.)

With this idea in mind, we believe it is permissible to assume that there is an initial instant,
in the history of turbulence generated by a grid, at which integral moments of cumulants
of the velocity distribution converge. At this initial instant the motion is not a fully developed
turbulence in the usual sense, and its only claim to be regarded as requiring statistical
specification lies in the random character of the small disturbance superimposed on the
laminar flow. At times subsequent to this initial instant the small disturbance is amplified
until it becomes ‘finite’, fully-developed turbulence forms through inertial interaction of
Fourier components, and finally, by a process of diffusion, the turbulence become homo-
geneous (in the cases under consideration here). We shall see in the following section that
power-law forms in the velocity correlations in homogeneous turbulence develop whenever
the Reynolds number is not small. Thus it seems likely that with practical methods of
generating homogeneous turbulence, power-law forms of the velocity correlations will
develop before the turbulence has become properly homogeneous. Nevertheless, the hypo-
thesis we propose to make here idealizes this complicated process of initial development,
and supposes that the large-scale structure of homogeneous turbulence developed by a grid
(or any other regular array of obstacles or holes) in a stream is the same as f it had always
been homogeneous and had developed from some initial state in which all integral moments
of cumulants of the velocity distribution converged. We are substituting a relatively simple
model for the rather complex real process by which homogeneous turbulence is generated,
in the belief that the model retains all the essential features of the real situation.

* Homogeneous turbulence generated by placing a grid in a stream carrying velocity fluctuations that
are not small are excluded from our investigation, since the statistical properties of the velocity fluctuations
approaching the grid would then need to be specified as part of the boundary conditions for the turbulence
generated downstream of the grid and the problem would be too general to be tractable.
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There are two separate ideas contained in our hypothesis. One is that the properties of
the small disturbance that triggers off the instability of the laminar flow near the grid have
no influence on the turbulence. It is not pretended that the cumulants of the distribution
of velocity in the small disturbance approaching the grid are exponentially small in reality;
rather, the assumption is that the long-range statistical connexions possessed by the small
disturbance (whether of a power-law, or any other, form) are negligible compared with
those that are subsequently developed by pressure forces when the turbulent velocity
fluctuations are large. The other idea is that although the process of turbulent diffusion, by
which the turbulence becomes homogeneous at some small distance downstream from the
grid, and the process of development of long-range statistical connexions by pressure forces,
proceed simultaneously, the end result is the same (so far as the functional forms of the
statistical quantities are concerned) as if the latter process did not begin until the former was
complete. ‘

It may be remarked that in the absence of this hypothesis, or something closely related
to it, it seems to be impossible to make any theoretical deductions at all about the large-scale
structure of the turbulence, and correspondingly difficult to account for the known experi-
mental results about the final period of decay. Quite apart from considerations of the initial
conditions from which the turbulence may have developed, we have been unable to find
any large-scale structure that remains unchanged in form by dynamical action, other than
the large-scale structure that develops from the initial condition described above. The
consequence of the hypothesis that is at once so useful mathematically—in that absolute
intractability is avoided—and, seemingly, so necessary if the observed rate of decay in the
final period is to be accounted for, is that the velocity correlations develop integral power-
law forms.

In view of its importance for the remainder of the paper, let us repeat our hypothesis:

Homogeneous turbulence that is generated by placing a grid in a uniform stream carrying small
velocity fluctuations has a large-scale structure like that which would develop, by dynamical action, in
a field of turbulence which at some initial instant t, is homogeneous and has convergent integral moments
of cumulants of the velocity distribution.

4. THE GENERATION OF POWER-LAW FORMS OF VELOCITY CUMULANTS AT
LARGE VALUES OF THE SEPARATION

In this section we shall make use of the hypothesis of the preceding section to determine
the forms of mean values of products of velocities at points separated by large distances, and
at times subsequent to the initial instant #,. Our procedure is to determine the asymptotic
form, at large values of the separation 7, of the various time derivatives of mean values at
the initial instant #,. Then if the mean value at time ¢ is written as a Taylor series in {—{,, its
asymptotic form at large r will be the same as that of the time derivative with the largest
asymptotic form at ¢ = #,. This procedure gives a definite result only for values of t—¢, such
that the infinite Taylor series in ¢—¢, is valid (the existence of all time derivatives of mean
values of velocity products may reasonably be taken for granted, but the vanishing of
Lagrange’s form of the remainder for arbitrarily large values of t—#, is an open question),
but we think it is highly unlikely that such a fundamental property as the asymptotic form
of a mean value could change at some finite value of £—¢,. So far as we have been able to

47-2
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tell from an examination of time derivatives of mean values at an instant subsequent to
¢ = t,, the asymptotic forms that are established in this section persist and are unchanged
(in form) by further dynamical action.

We proceed to a consideration of time derivatives of the most important of the mean
values of velocity products, namely, R;(r), and begin with the well-known exact expression
for the first time derivative:

OR;(r) _

Relt) _ L e >+;§’” W gyveR(r), (41)

dr;

where u; = u;(x’) and r = X’ —X. At the initial instant £, in accordance with the hypothesis
of the preceding section, R;(r) is so small at large values of r that all its integral moments
with respect to r converge. This is also true of the inertia and viscous force terms on the
right-hand side of (4:1). But taking the divergence of (4-1) shows that

2, !
0%u;uy u;
dr;or,. °

ag u” u// u/ dX ”
k
so that U =
b G0 (X=X

sz,;} S

(4-2)

and this is not a quantity whose exponential smallness at large values of r at the instant ¢, is
guaranteed by the hypothesis. The hypothesis does ensure, however, that all integral
moments of u]uju} exist at ¢ = #,, so that it is possible to expand the integral in inverse powers
of 7, the expansion having a form like that in (2-2). The coefficients of terms of order r~! and
e

=2 are zero because of the double derivative in the integrand of (4-2),* and since uju; u; is
solenoidal (with respect to X" —x’) in the j-index the coefficient of the term of order =3 is

also zero. Hence, as r— oo,
pu, L& (1)fu” uyu; 5,ds (4-3)
P~ = e Gy, 9r, o, K3 5

(where s = X" —x’), there being no kinematical reason why the integral coefficient in this
term should vanish; consequently, as r— o,

(7_&&‘2 ~ —T... ____a.‘_i.__(l)ﬁj". _._04____(_1.)’ (4.4)

a |, Kim gy, 0r, dr,0r,, \r]  ~ 5" 0r; 0r 0n,0r,, \r
where T = o f Wl s, ds. - (4-5)

Thus the effect of pressure forces, which do not have a local origin and which depend on
the whole distribution of velocity, is to build up the velocity covariance so that it decreases
at infinity not more rapidly than 5. It will be noticed that the two pressure terms in (4-1)
are irrotational in the ¢ and j indices, respectively, so that (dw,w; w;0}3t), is exponentially small
as r— o0, corresponding to the fact that pressure forces have no direct effect on vorticity.
This smallness of the vorticity persists in all the time derivatives in the case of a bounded
field of vorticity, but in the case of homogeneous turbulence it will appear that the indirect

* In both cases the volume integrals are converted to surface integrals and use is made of the fact that
u;uu; is of smaller order than 73,


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LARGE-SCALE STRUCTURE OF HOMOGENEOUS TURBULENCE 381

effect of pressure forces, acting through the velocity field, can build up power-law forms of
the vorticity covariance at times subsequent to #,. The point is that the irrotational velocity
field associated with, and surrounding, a correlated region of vorticity has an effect (through
stretching of vortex lines, for example) on the vorticity at points distant from the correlated
region, and in this way a statistical connexion between the vorticities at distant points can
be developed. To see this, we must examine further time derivatives of R;(r).

It is scarcely feasible to write down the complete expressions for d>R,;(r) /082, 3R,;(r) /0t3,
etc., so that we propose to describe the procedure and to exhibit the results without going
through the algebra in detail. First the expressions for §2R;(r)/d#* and 03R;(r)/0#* are
obtained from (4-1) and are cleared of time derivatives by substitution from the Navier—
Stokes equation. The resulting terms that contain the pressure (these being the only ones
that will not be exponentially small at ¢ = #;) are then examined with the object of deriving
asymptotic forms like (4-3). In this way the following orders of magnitude at large r of the
first three time derivatives of zTuJ' at ¢t = ¢, are found. Orders of magnitude of the corre-
sponding time derivatives of w;u; and w,0; have been found by discarding the relevant
irrotational terms in the expressions for dR;(r)/dt, >R,;(r)[0¢* and 9*R,;(r)/083:

Ul w,u; w; v}
function exp. small exp. small exp. small
first time derivative r-5 r=6 exp. small
second time derivative r-5 r=6 exp. small
third time derivative r> r=6 r8

A power-law dependence on r appears in the first time derivative of wu}; this is the
correlation between the vorticity at X, and the irrotational acceleration at X’ associated
with a correlated region of vorticity centred on X, as already explained. A power-law
dependence on  appears in ;0] when we come to the third time derivative, and it does so
through the indirect effect of pressure forces on the vorticity, although a detailed statement
of the process cannot be given. There is little doubt that power-law asymptotic forms of all
cumulants of the velocity and its spatial derivatives do develop—if'sufficient time derivatives
are taken—as a result of the direct or indirect effect of pressure forces. The important
results in the above table are that zZu_J' is at least of order =5 for large values of 7, at times
subsequent to £, and that w;0} is at least of order r-8. We proceed now to show, from a con-
sideration of the nth time derivative of %4} and w;w] that in fact no terms of larger order ever
appear.

The nth time derivative of 4;u] can be written as

g = 2 (4:6)

m=

where C(m) is a number. Now the largest possible asymptotic form of any mean value in the
present context is possessed by mean values of the kind

<\ L/ </ ]- 32 1 N nY N ”
PR FE) ~ HW(?)f”k”l FX') dx”;

if F(x') is a solenoidal tensor this integral vanishes and p(x) F(x’) is of order »~* when 7 is

large. It is not difficult to show that %F (x’) is of smaller order than p(x) F(x’) by one
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power of r (essentially because elimination of a time derivative by means of the Navier—
Stokes equation introduces one space derivative). Hence the largest asymptotic form that
can arise from the summation (4+6)* occurs in the termm = 1 (or m = n—1) and is

¢, (ﬁ =t) = 069,

since 9"~1u;/d¢"~1 is a solenoidal vector. This establishes that when  is large R,;(r) is of order
r~5 at all times subsequent to tbe instant &,

Turning now to the vorticity covariance v,0] ;, if we omit terms that vanish when the curl
with respect to both the ¢ and 7 indices is taken and terms containing viscosity (since power-
law forms arising from the terms containing » are clearly of smaller order than those arising
from terms not containing v), the right-hand side of (4-6) becomes

ol Qw0 (Qua |l Im=1 (Quyu) 0" (Qujuy
g ( dx;, ) 4 ain- 1( 0%, )+m§10(m) 3t’"“1( 0%, )Ht”"”“l( dx, )
d ( 0 luju 0" lwuy ~ly, uk(? “Luju
‘ﬁfk(f T Y g ) arkar, by Clm ) Tttt

(4:7)

Considerations similar to those just used show that the largest asymptotic form that can
arise from any term in the summation on the right-hand side of (4:7) is of order r=*, and
the corresponding contributions to d";u}/dt" and 9w, ;/0t" are of order r~¢ and 7~
respectively. Terms of the kind p(x) (x ) that arise from the expression in circular
brackets on the right-hand side of (4:7) are necessarily such that F(x’) is the solenoidal
vector «;(X’) and are therefore of order 7~#; pressure enters always as a pressure gradient so
that again there are contributions to I, ;/0t" and 00,0 ;/0¢" of order 76 and r~8 respectively,
and the result about v, is established.

The conclusion, on which all the analysis in later sections is based, is that, if the hypothesis
of § 3 be allowed, the velocity covariance is in general of order =5 at large values of 7 and the
vorticity covarianceisin general of order 778, at all times subsequent to theinitial instant ¢=¢,.

Similar results can be found for other mean values, and in particular for the important
triple product Sy;(r) = m which occurs in the dynamical equation for wu). In the
expression for the first time derivative of u;u,u; there appears the term

—uu _0_1{7: _ _-‘].-i w 02u” u dx” 1 a3 (l)fu u (u//u// __u// //) dxﬂ
7k g amdr; ) k(?x"ax” x—x |~ 47r0r or,dr,, kAT 1
'j J ) m ) l

as r— 00. No larger asymptotic form appears in any higher-order time derivatives, so that

u;u,u} is in general of order 7~* at large values of 7 at times subsequent to ¢ = #,. Moreover,
consideration of the nth time derivative of 4;u,u; at ¢ = £, in the manner described above,
shows that the term of order r~*in a time derivative of uu,«; is always such that its curl in
the j-index is zero, and that the largest term whose curl does not vanish is of order .

* Use is made of the fact that the asymptotic form of the mean value p(X) F(x) G(X), as r—>c0, is
1 3 1 n_n W, , n” <\ " " “n n”
i ez ) (P00 [k =) G e+ 6T [ =) Fix) e,

where, again, if F(x) and G(x’) are solenoidal, the integrals vanish and the next term in the expansion in
powers of r~* must be taken.
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5. KINEMATICAL STRUCTURE OF THE LARGE-SCALE MOTION

The task is now to find the detailed kinematical structure of the large-scale motion, since
a knowledge of this structure is essential for the dynamical investigations which follow.
Mathematically, the problem is that of determining the asymptotic forms of both the
spectrum tensor @, (k) as £— 0, and the velocity covariance R;;(r) as r— co. Available for
this calculation are the results, obtained in the preceding section, that R;;(r) = O(r~?) and

V(1) = 0(x) 0;(x+1) = O(r™9) , (5:1)

for large values of r, together with the incompressibility condition.

To facilitate comparison with the earlier investigations, we begin with the immediate
consequences of the convergence, or otherwise, of the integral moments of R;(r), when the
order of magnitude of this tensor at large values of  is that stated above. Thus, the absolute
convergence of the integrals

fRZ.j(r) dr and [r,R,(r)dr

ensures (using the known properties of Fourier transforms) that the tensors @;(k) and
0®,(k)/ok, are continuous functions of Kk for all values of k, including k = 0. The second
derivative 9?®,;(K) [0k, 0k,, on the other hand, which is given formally by the expression

s [renRy(r) e dr (5-2)

exists as a continuous function of k at all non-zero values of k, by virtue of the convergence
of the integral
[ Ry(e) 2 ar,

but is singular at k = 0 since the integral

ﬁ ren Ry;(r) | dr ; (5-3)

diverges. The divergence of (5:3) is logarithmic, and since the exponential factor in (5-2)

is effectively unity for values of r within a sphere of radius O(£~1), it follows that the
singularity in (5-2) at k = 0 is not worse than logarithmic, i.e. in general,

P, (k)

0k, 0k,

— O(Ink) | (5-4)

for small values of £. .
If, now, the spectrum tensor @, (k) be expanded in a Taylor series with remainder,

_ 00, (k)y | 1, . (0°D,(k) ,
0,0 = 0,(0) +h( ) + b5 50 ) (5)

where 0<| a| <1, we obtain the equation
87D, (k) = f R, (r) dr—ik, [, R, (r) dr + O(InE) (5-6)
for small values of k. The spectral form of the'incompressibﬂity condition

kD, (k) = 0,

i)
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then yields the result fRij (r)dr — o, (5-7)

*
and Cramer’s theorem that X; X;®,;(k) must be non-negative for an arbitrary choice of the
complex vector X; (the asterisk here denotes the complex conjugate), yields the further result

f r Ry (r) dr = 0. (58)

So far as the first two terms of the expansion (5-5) are concerned, therefore, the analysis is
identical with that given by Batchelor (1953).

The important difference between the present results and earlier work is the fact that the
leading term in the expansion of the spectrum tensor @,;(k) at small values of £ now involves
a singularity whose nature is determined by the local behaviour of the velocity covariance
R;(r) at large values of r. If nothing is known about the latter behaviour, other than its
general order of magnitude, it does not seem to be possible to derive any further information
about the singularity in the spectrum, apart from one or two results concerned with its
tensorial character that follow from the incompressibility condition. In particular, it does
not seem to be possible to improve upon the estimate (5-4) for the order of magnitude of the
second derivative of @,;(k) at small values of k. However, there is also available the associated
result that the vorticity covariance V;(r) is O(r~8) for large values of 7, and it will appear
that this second result determines the entire asymptotic structure of R;(r) at large values
of 7, and therefore the precise nature of the singularity in the spectrum tensor.

Considering the asymptotic behaviour of R,;(r) first, the relation between this tensor and

2,

V;(r) in an incompressible fluid is (see Batchelor 1953)

2R, (r
VIR, (1) = T (x) 8 V() — L 1E), (59)

t7
of which a special case is VIR, (r) = =V, (r). 5-10

P kk Kk
The general solution of (5-10) is
1 , dr’

Ris(e) = gz [Pl [ (5:11)

and, for large values of 7, the integral may be expanded in powers of 7~! with coefficients
which are integral moments of ¥, (r), in the manner described in §2. Since ¥}, (r) = O(r~8)
forlarge values of 7, the expansion is valid up to, and including, the term in 7~5, the remainder
then being of order 76, Moreover, R, (r) = O(r~%) for large values of 7, so there is just one
valid non-zero term in the expansion. Thus, writing

11
Cotmp = 35 31 |71,V (1) (512)
we have Ry(t) = Copp O (;)+o0 (513)
Kk “KKimnb Oy, O, 0, 1, \r :

In the general case of the uncontracted velocity covariance, the solution of equation (5-9)
may also be written in the form of an integral analogous to (5-11). But the last term on the
right-hand side of (5-9) is O(r~7) for large values of r, so that the expansion of the integral
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cannot be carried as far as the term in -3, In other words, the only valid terms in the
expansion are identically zero. This difficulty may be overcome in the following way.
The solution of (5-9) may be written in the form

Ryx) = — 4 [V(x) 8, ol )]lrdrr[—ajjfgj, (514)

where V24(r) = R,,(r) N (5-15)

and ¢(r) = O(r~3) at large values of 7. Now let ¢(r) be any function (with no singularities)

which has the behaviour

d*r
¥(r) = $Chhimnp m +0(r*)

for large values of 7. The corresponding behaviour of V2 (r) is

V() = Cogprr r o (1) +0(r9)
KKmnt 9y, dr,,, O, dr, \r) " ’

and hence, from equations (5+13) and (5:15),

V2[(r) —(r)] = O(r~") | (5:16)

for large values of r. Also, the general solution of the equation obtained by subtracting
V2y(r) from both sides of (5-15) is

1) = ¥(E) — o [TRale) Vo N

and since the expansion of this integral as far as the term in 7% is now justified by (5:16),

we have
dor 1 02 (1
— l o 2 ’ ’ - .
¢(I‘) - 2 kklmnp arlar ar arp 871'(97}57‘ ( )frl m[Rkk( ) V %(r )] dr —l—O(r 4) (5 17)

for la.rge values of 7. Hence the asymptotic form of R;(r) is; from (5-14) and (5-17),

Ry(r) =—3C i — (Comp— 8 Cotmng) 7 (1)
ij 2 Y kklmnp ariarj 3rl&’rm arn arp ijlmnp ij ~ kklmnp arl arm arn &.rp ,
1 04 1 ’ . )
+8ﬁm}‘( )frl 7o [Rep(r) — V3 (r)] dr’ +O(r=%). (5'18)

It remains to evaluate the volume integral in the result (5-18). Actually, the two terms in
the integrand each give convergent integrals separately, as the possible logarithmic
singularities do not occur. For if 7* is a value of 7 sufficiently large to permit the replacement
of the integrands by their asymptotic forms, then the contribution to each of these integrals
from large values of r is of the form

f 71, F(r) dr, | (5-19)

where F(r) is a known function of order 7=, It follows that if F(r) can be written as the
third derivative of a function of order -2, then a threefold integration by parts enables
(5-19) to be expressed entirely in terms of convergent surface integrals whose sum vanishes,
so that the complete volume integral converges. The integrands in (5:18) clearly satisfy

48 Vor. 248. A.
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the required conditions (see (5-13) and the definition of ¥(r)). We may also note here
a point of some importance in the sequel, namely that the integral
1
Lijmn 4 rmrn sz( ) d
converges by the same argument, since the asymptotic form of R;(r) may, by (5:18), be

written as a third derivative of a tensor of order 2.
Taking first the integral in %(r), in (5-18), two integrations by parts give

sy )iyt ax = g () im [ [ 5 —aprp )=o) Jas
(5-20)

where dS, is the p-component of a surface element at position r’, and the integration is over
a large sphere. Residual volume integrals do not occur in (5-20) after contraction with the
harmonic tensor outside the integral (as is obviously necessary since these volume integrals
are arbitrary). On substitution of the asymptotic form of ¢ (r’) the right-hand side of
(5-20) becomes

5 02 [1 ;) oY
sy )Ckkmf "I g gy arear, G, (5:21)

where d€)(r’) is the solid angle subtended at the origin by a surface element at the point r’.
Isotropic surface integrals of the type appearing in (5-21) occur frequently in the analysis,
and, to avoid lengthy digressions in the text, we have evaluated them in appendix A, to
which reference should also be made for the notation. Thus, in the present case, we have

' a ’ , 87
frl Tm 0rp 07, or 3 AT dQ(r ) = 3‘ [%'b}mpqrs_%&lmqurs]’

% /1 , 47r 2% 1
Wn(r)frl mvz¢( )dl‘ = 7 37’1 37. ( )Ckkpqrs‘)‘lmqurs

_ dmal 21 1 e 21y o s
=~"14 ror, (7) Cosomm = 140797 (7)Jrirur Wiate ar

2
114 (7ra(7r (l)f 71T V2R (1)
14

After two integrations by parts, this last result becomes

9 o 2 [ o de
~ia ()hm i R dS, 4 5 ()fr,r Ry (r') dr,

R—>w0J r'=R

so that

in which the surface integral vanishes in view of (5:13). Hence

Brlac?zr (l)fr,r [Ry(r’) — V¥ (r')] dr’ = 0,

and the asymptotic behaviour of R;(r) is, from (5-18),

a5 d4
— 1 . A - .
R; (r) =—4% Ckklmnp ar, ar, dr,or, 9 37}, (Czjlmnp 03 Ckklmnj:) dr,ar, ar, 81’1,( )‘f‘ O(r=%). (5-22)
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We have not yet considered the consequences, so far as the tensor Cj,,, is concerned, of
the fact that the vorticity is a solenoidal vector. This may be done by writing the condition
in the form
fr,rm TaTp?; (?_’__I/:;q(r) dr =0,

rq
and integrating once by parts. The surface integral vanishes, since ¥, (r) = O(r~8) for large
values of 7, and the volume integrals yield the condition
Ciitmnp = 0 (5-23)

ijlmnp
perm.j, !, m, n,p

In appendix B, the general solution of equation (5-23) is shown to be

C _1
ijlmnp 4[
* perm. [, m, n, p perm. m, n, p

> €y €imC. | 5:24
ilg

jmr ~ qrnp?

where C,,,, is symmetric in the indices ¢, 7, and n, p, and the contracted form C,p vanishes.
The inverse relation is

Clmnp = ‘g‘equ €slm Cqsrtnp
1 .
= 80 qu stmfr rtrnrp qs(r) dr (5‘25)

Itshould also be noted that, by imposing the solenoidal condition on the vorticity covariance,
we automatically impose the same condition on the velocity covariance, since the analysis
depends on the validity of the basic equation (5-9) at all points of space. So it is that, when
the formula (5-22) is written in terms of the new tensor C,,,,, the result is the solenoidal
behaviour

R,(r) = 1C 95 _1c 04 (1) i d ()+0( ’)
ij £7imnb Oy, dr; 0r,0r,,0r, dr, =4 dr; 0r,0r,, 0r, 27gtmn gy dr, dr,, or,

_ 92 2 92 9% -6 .
= Lm0V 537) (3 ‘arjarm)ar,,arﬁ(’(’ ) (5:26)

and all the kinematical conditions of the problem are satisfied.

It remains only for us to point out the relation between the tensor C,,,, and the second
integral moment of the velocity covariance Z,,,,. The calculation is rather long, and it must
suffice here to indicate its nature and to quote the result. Starting from the relation (5-25),
the tensor V, (r) is written as a second derivative of R;(r), and a double integration by parts
then yields a collection of surface and volume integrals. All the surface integrals depend only
on the asymptotic behaviour (5:26) of R;(r), and may therefore be evaluated entirely in
terms of Cy,,,,. All the volume integrals are particular combinations of the tensor Z,,,,,. Thus,
formally, equation (5-25) is a relation between these two tensors, though it is not clear how
much information is yielded by the relation until its detailed tensorial structure has been
found. In fact, however, the relation determines each tensor uniquely in terms of the other,
the equation for C,,,,, being

20C1 —4 Zlenﬁ - %anlm — 232(Llnmp + Llpmn + Lmnlp -+ meln)
+ %—%alm (kanp - ankk) + 21 n[z (kalm - lekk)
+ '21_13mp (23kaln — 65Llnkk) + —le_gmn (23kalp - 65Llpkk)
+ Ell—é\lp (2 3kamn — 65Lmnkk) + %A\m (23kam1) - 65mekk)

+%Lz‘ikk(aln “’“311: )+ (5’27)
48-2

mnp
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Hence the coefficient in the asymptotic behaviour (5-26) may be written in terms of L,
and it is interesting to observe that the large-scale structure of the velocity covariance is
determined by the same tensor coeflicient as was the large-scale motion in the earlier
work of Batchelor (1949) based on the assumption of convergent integral moments of
R(r).

Returning, now, to the behaviour of the spectrum tensor ®;(K) at small values of £, the
principal simplification arising from the foregoing results appears to be due to the con-
ditional (though not absolute) convergence of the integral Z,,,. Thus the integral (5-2)
exists at k = 0, and, although it does not represent the second derivative of the spectrum
at that point, the effect is to ensure that this derivative is uniformly bounded at all points
(other than k = 0) within a sphere of finite radius surrounding the origin of wave-number
space. Thus (5-4) should be replaced by

P20, (k)
ok, 0k,

- o,

and we recover from (5-5) (with (5-7) and (5-8)) what is, perhaps, the most important
single result concerning the large-scale motion, namely that

O,;(k) = O(k?) (5-28)

for small values of £. In other words, the singularity in the leading term of the spectrum is
concerned with the direction of k rather than its magnitude, and the task is, fundamentally,
to ascertain this singular dependence of ®;(k) on the direction of k from the directional
properties of the asymptotic behaviour of R;(r). However, since it is known that these
simplifications arise from the peculiar behaviour of the vorticity covariance at large values
of 7, it is rather easier to derive the form of @;(k) from the spectrum of the vorticity
fluctuations.
Hence, we define the vorticity spectrum £2,;(k) by the equation

1 .
Qy(k) = ¢ f V(r) e dr, (5-29)

and the Fourier transform of (5-9) then gives
Q,i(K) = (k%0,;—k;k;) Dy (k) — £2D,(K). (5-30)

It follows from (5-5) that £,;(k) = o(k%) for small values of £, so that ;(K) and its first three
derivatives vanish at k = 0. The essential point now is that the Taylor expansion of Q;(k)
may be carried one term further by virtue of the known behaviour V;(r) = O(r%) for large
values of 7. Thus, the fourth integral moment of V;(r), namely C,,,,, is absolutely con-
vergent, so that the fourth derivative of ;;(K) is a continuous function of k at all values of k,
including k = 0. Also the integrals

fl Ty Vi (T) |2dr and ﬂ Nty V(1) | dr

m'n'p'q
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converge and diverge logarithmically, respectively, so that the fifth derivative of €;(K) is
a continuous function of k for all non-zero values of k, and is O(In k) for small values of £.
"The behaviour of €,;(k) at small values of % is therefore
1
Qz’j(k) =530

2,”2 ijimnp

kk, ko k,+ Ok In k)

1 Crnphikn bk, + O(RS I ). (531)

4 12 zlq jmr grnp

The behaviour of @;(k) is obtained by using the relation

. . Qi (K) = B2y (k)
to write (5-30) in the form

0, (k) = 5[ (3~ 42) 0,00 ~ 2,10 ].

Substitution from (5:31) then gives, after a little manipulation,

e YA
0y () = 1ot (5, 551) (30— 52 oy + ORIk, (532)

for small values of k. Thus @, (k) is of order £2 with a singularity at k = 0 of the type already
anticipated. The coeflicient in (5-:32) may also be expressed in terms of the tensor L,,,,,, but
the equation is not then so simple. We should also note here that the spectrum function
giving the distribution of energy with respect to wave-number magnitude &, namely

E(b) = [®,(k) dS(k),
where the integration is over the surface of a sphere of radius & with centre at the origin of
k-space, has the form £ ( K) = Ché-+ OB In k)
for small values of £, where (= - Clmnp( 300 0p —T50mnp) +

Thus, although the integration over all directions removes the non-analytic nature of the
leading term, this is not in general true of the function as a whole.

As a final check on the consisténcy of the analysis, we may derive the asymptotic behaviour
(5-26) of R;(r) directly from the result (5-32). Thus, writing

kkN(.  kik,
(k) = (0= "5 (B~ ) Wi,
where Wi (K) ~ oy Comp by 25 k0, (533)
we have R f (k) e rdk

27‘3(3""72 aza az)(’y vi- )Flm@m e, (5:34)
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where 1 = r/r,A = 7k, and the operator V? here stands for 92/d/, dl,. The convergence of this
integral is assured by (5-33), and when r is large we have

IP‘lm(m/r) ik.1 1
fﬂw——/lll' € dl Er"

2 ~lmnp r

32 1— ei)ul
~2__ - -
o) a9
(where a term independent of 1 has been added to the integrand in order to make the

integral convergent) 1O 2 92l
B TR

A A, . 1
n’'p AiN.1 —
Me d?\-—MC

2 Ylmnp

(5-35)

The asymptotic form (5-35) holds for all 1, so that it is permissible to find the asymptotic
form of (5-34) by changing the order of the two operations of differentiation with respect to 1
and taking the limit as r— c0. Hence, as r— o0,

: 92 0%\ 92
~Y 1 _5 3 a7 a7
R;(r) ICtman’ (‘3;1 Vi— al; 31) (‘%’m Vi— ol alm) ol,al,

=1C, (3. V2— _61_)(3 \vz _ﬁ_)__ﬁ_z_r_
tmnp\"il or;0r) \'Jm dr;0r,,) or, or,’
where V2 stands for §2/dr,dr, again, in agreement with (5-26).

It will be noticed that the derivation of the asymptotic behaviour of R;(r) via its Fourier
transform is considerably shorter than the corresponding analysis in physical space. We
have included the latter largely on account of its close analogy with the conventional
treatment of the large-scale structure of irrotational velocity fields, which also owe their
existence to the long-range effects of the pressure.

6. GENERAL DYNAMICS OF THE LARGE-SCALE MOTION

In this section we propose to examine the consequences of the Navier-Stokes equation,
for the leading term in the velocity covariance R;(r) (at large r) or, equivalently, for the
leading term in the spectrum tensor @;(k) (at small £). The basic dynamical equation is

R(E) — 7 )+ 2522 ), (61)
The explicit asymptotic form of R;(r) (as r— c0) that is consistent with the basic hypothesis
of §3 and with all the kinematical conditions, has been found in the previous section, and
similar results for the terms on the right side of (6-1) are now required. As with the velocity
covariance R;(r), it is possible to obtain the asymptotic form of each of the terms in (6-1)
atlarger from the behaviour of their Fourier transforms at small £, and this is the procedure
to be adopted here. (The same results can be obtained without the introduction of Fourier
transforms, but the proofs are then longer.)

Kinematical relations for u;u, u;
Consider first the two triple velocity product mean values in (6-1). We define

lk](k) 1 Uy, U te~ikrdp, (6-2)

This integral exists, and is continuous, for all K, since #;u, u; is continuous and is known to
be of order r~* when r is large. The incompressibility condition shows that

j zkj( )”—O (6.3)
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for all k, one consequence of which is that

Y5(0) = g [ dr = 0. (6-4)

From (6-2) we have |
G Yag (K) = Aga(K) = 7 [t0] e, (6)
and, in view of (6-3), Yo () = 58 Al K). (6:6)

Now the mean value u;u,0; is of order =6 when r is large, even though #;u, 4; is of order
r~* (as established in §4), so that A,,(k) and its first two derivatives exist, and are continuous,

for all k. Moreover, fl u;u,0;7,7,7, |2dr converges, so that the third derivative of Ay(k)

exists for £> 0, although in general
f w0, 7,7,7,dr = O(In R)

when R is large. Thus noting that the zero and first integral moments of »u,w;, vanish
identically (after integration by parts), we can write the following Taylor series with
remainder for A;,(K):

1 v
Ay(K) =~-——2—!/c1,/ch,wq—{—3,kpqun8 0,0, rpr r,e"iekrdr, (6:7)

where 0<|a|<1, and By, = 81 U 0] 7,7, dr.
The exponential in the integral in (6-7) is effectively equal to unity for values of 7 between

zero and O(k™!) so that, when £ is small,

Ay (K) = —3k,k, By, +O(K Ink), (6+8)
d Y 11 k k,k, 1
an xi(K) = —3ie; Ic2 ? Bipg + O (K? nk) (6-9)

From this expression for the form of the Fourier transform of u;u, 4} at small values of £ we
now obtain the asymptotic form of u;u, u; as r— co. We have, from (6-2) and (6-6),

Uittt = 16, %Aik,(k) e+ dk.

A,(K) has been shown to be quadratic in k when £ is small, and there is no loss of generality

in puttin;
P 8 Aikl(k) = kp kq Fiklpq (k)
for all k, where Lirpg(K)  _ o(k2) a5 fos 00, (6:10)

93
Hence w U = —€;,r* »—-———fl‘ZI‘i A/r) eNlda (6-11)
k“%j jnl alnalpalq klpq( /) .
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where 1 = r/r and A = rk, and, in view of (6:10),

f/l‘zl‘,wq(l/r) M AN ~ — 1By f/l‘zei’*'ld).
= —.B'kl[)qwz/l>

2

as 7> c0. This limit holds for all values of 1, so that when r is large (6:11) becomes

— 3 » 1
sttt ~ €50y By 74 57 az“ai’(z“)

» 1y
— g2 .
= 6]71le1<1qu ( ) (6-12)

The fact that ;u, v, is solenoidal in the index / and is of order =6 when r is large imposes
a constraint on the form of the coefficient B,,,,. The general theorem of appendix B shows
that in these circumstances we can write

Bikzpq' = el];mszqm+€lquz'kpm) (6:13)

where By, is symmetrical in 7 and £; then substitution in (6-9) and (6-12) gives
- . k;k _
Yo () ik 8~ 57) B (6:14)
hen £ is small, and 2n2B, i—l) 615
when £ 1s small, an wu L, U U ~ 2m iin 371 ar ( s (6-15)

when 7 is large.
__The last step is to relate the coefficient By, to an integral moment of w;uu, instead of
u,u, 0;. We multiply both sides of (6 13) by e,m, and find

3B, — 3qj By = €4; Bipg

1 —
= €pj g3 3fu w0 7,7, dr

— 575 | Oon =830 5

Now, from (6-15) and with an argument similar to that leading to the convergence of
the integral (5-19), we see that the first integral moment of u;u,u; converges, and we can
define

du,u u;,

7,7, dr. (6-16)

Ty = — |weu;ndr. (6:17)

1
4m
Then (6-16) becomes, after integration by parts, and with the use of (6:15) in the surface

integral
1 1
szqj —9; qukll 87 Q3 (Bpm 8jn —31)11 3]711) {27[ szlsfar 0r,07 ( ) rdQ(r) 477( zknq +8mq zknp)}
‘"(8pm in 3pn6\]m){ nlqum ( nl qum lesb\npqm_*"(ssn alpqm)} Bz'kls (37:qu 8 Tz'kll)

= ( quj+3Bqu 2é\]qukll) o7 2(3 ikjq b\ Tz'kll)’
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where the integral has been evaluated by the formulae given in appendix A. Then

—3B

ikjq

128

tkqj

"—38quikll = (37;qu aquz:kll)’ (618)

and if this relation be combined with that obtained by interchanging the suffixes ¢ and j, we
obtain

+7;

ikqj

—4,,B, (4T
Jjq ikl T

thq

3950 L) - (6:19)

tqu

Substitution in (6-14) and (6-15) gives the final expressions for the asymptotic forms:

i ki,
Tz‘kj(k)"’ _E;T_ﬁkl (3jm ) (47;kml+7:klm) (6'20)
when £ is small, and uu u,~ —3T, _P (1) ' (6-21)
> iTkTy 3 ikim 0r; 0r,0r,, \r

when 7 is large.

Actually there is a further condition to be examined, although it has not been needed for
the above results. The fact that m is solenoidal in the index j imposes a constraint on the
form of 7};,,. We begin with the identity

f a_‘%“_kffir,rmdr — o0, (6-22)
7
and find, after integration by parts,

Toim+ T = ! im WU U TS, rdQ( )

Z 4T oo r=r
1 a3 1
zkpq47r W( )7' 11" 7dQ(r)
= Ty (O Ormg 81 Omp— §0m Ope) (6-23)
with further use of appendix A. Hence the condition reduces to
Ty =0. (6-24)

It will be noticed that if for some special reason the mean value %, 4] is instantaneously of
smaller order than r—* when 7 is large, the surface integral in (6-23) vanishes and 7, is
anti-symmetrical in / and m. The asymptotic form (6-21) then vanishes identically, and
(6-20) reduces to an analytic expression, as, in both cases, is to be expected. The incom-
pressibility condition (6-24) is weaker than anti-symmetry of T}, in / and m and is valid
more generally. o
Kinematical relations for pu;
Most of the corresponding results for the pressure-velocity covariance can be derived
from the equation obtained by taking the divergence of (6-1), namely

2. !
0%u;uy u;
dr,0r,

]JZ} is of order r~* when 7 is large, so that the Fourier transform

I ([~ _er
IL(k) = 5 fpuje ik g

Vi, = — (6-25)

49 Vor. 248. A.
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exists and is continuous for all k. Then, from (6-25), (6-2) and (6-6),
Ic-lc i kkik
Hj(k) =Tz z zkj(k) = jnl k4 = zkl(k)’ (626)

whence, using (6:20), the asymptotic form of II;(k) when % is small can be obtained at once.
The asymptotic form of pu} when r is large can now be found from the known behaviour
of its Fourier transform near k = 0 in much the same way as before. From (6:26) we have

7 = kik ’“nA,,d(k) eer dk

jnl
= €yt~ az az i, fll A, (A7) EN1dA, (6-27)
wherel = r/rand = rk. The behaviour of A, (k) is described by (6-10), and when 7is large

f).“‘Aikl(?\/r) eMdA ~—1By,, J/lp/l"e”‘ Tda

0%
—3m Bua 731
for all 1. Hence when 7 is large (6-27) becomes
ks %
ﬁu ~ =376y Bigypg dr;dr, dr, {ﬁrﬁﬁr }’ (6-28)
or, on making use of (6-13), and then of (6-19) ,
— P37
! ~J 2 .
puj~m B”"”’( ~ 9r;0r ) dr,0r, 0r,
92 Pr
= — (4L + Tiim) ( “or.or ) Jr,0r,0r," (6-29)
i%"'m i

The non-harmonic part of the expression (6-29) could of course have been obtained
immediately from the differential equation (6-25) and the known asymptotic form of the
right-hand side, but the determination of the harmonic part of the asymptotic form of pu
requires the use of some method like that above.

Since the asymptotic form (6-29) is a derivative of at least the second order, it follows

that the integral f pu; f,dr converges. We shall show, for later use, that this integral is

linearly related to the first integral moment of #;u,u;. From equation (6:25) we have

— u;u u;
szpuj r,r?dr = ~—f Br,&'l;k] r,r2dr, (6-30)
and two integrations by parts give
ém Uy U

1, 1wt 4} (S 1,73+ 211y 1) | AQ(r
J\TP ip'k

R—>w0 J r=

lofﬁi;'-rpdr =lim {—%rqrpﬁ—l—t}ﬁt_}rprf’
R 37q

— fuiuku]'-(Q(?pkri—l—2b‘lprk—}—23krp) dr, (6-31)
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and, on making use of (6-21) and (6-29) and of the rules for evaluating surface integrals
described in appendix A,

107 9
T s ikm) gy 3rlﬂr

Tz'klm dm{— tk[)jlm +%(9, )it mzkp+3lm 3jikp+ 31;1:1;)} 477(4 zp;z+27;sz)’

so that, making some use of (6-24),

1
( )r rkrprdQ(r) an (41, +2Ty;,)

£ [77,dr = £h5(108,, Ty 107, — 467,

win T 10Ty, — 4T, — 23T, —2Ty,;). (6:32)

The vector pu] is solenoidal, so that a relation like (6:22) holds. The consequent condition

on f pu r,dr, corresponding to (6-24), is readily found to be
i—rfﬁj. r;dr = 0; (6:33)
however, this result is already contained in (6-32).

The asymptotic form of the dynamical equation

As a result of the investigations in this and the preceding section, we are now in a position
to write down the asymptotic form of equation (6-1) as r— oo, or of its Fourier transform as
k0. On substituting (5-35), (6-21) and (6-29) in (6-1) we find, with some rearrangement
of the terms,

1dC,y . 32) . 32) ?r
la g ATyt 4T, qﬁ"+7;m"q+Tm"ﬁ)}( Vi = Grar, (37 = ar,ar,) a0,

(6:34)

is related to the second integral moment of 4,4} by (5-27) and

where, it will be recalled, C,

bgmn
T, ymn 1 the first integral moment of u,u_u, u,u,u, (see 6:17). The corresponding equation obtained
by comparing terms of the second degree in £ in the Fourier transform of (6-1) is
1dC,, k;k, k;k .
2 {4 é’; __(4 mﬁqn+4qupn+7;mnq+Tmnﬁ)} (31}0 72 ) (314 szq) k k =0. (6'35)

These are the (equivalent) equations that express the effect of inertia and pressure forces on
the large-scale structure of the turbulence. They are of so complex a form as to be unlikely
to yield predictions of the kind that could be observed in a wind tunnel. It also seems
unlikely that there are any simple dynamical results about the large-scale structure that can
be put in the place of the old erroneous ‘result’ that the asymptotic form of the energy
spectrum at small £ is independent of time.

It is not possible to equate the expression within curly brackets in (6-34) and (6-35) to
zero, because there are several tensor forms (e.g. d,,,) which vanish when contracted with
the remainder of the left side of (6-34) or (6-35). Consequently, to obtain an explicit
expression for dC,,,,,/dt or dL,,,,,/d¢ we must adopt a different procedure. Equation (6:1)
must be multiplied by 7,7, and then integrated over all values of r, the resulting volume and
surface integrals on the right-hand side being evaluated with the aid of the results obtained
in this section, namely (6-21), (6-29) and (6-32). In this way dC,,,,,/d¢ and dL,,,,,/df are

49-2
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found to be (rather lengthy) linear functions of 7};,,, and in general are non-zero. From
the point of view of dynamics of the large-eddy structure, as represented by the behaviour
of R;(r) at large r or of @;;(Kk) at small £, it is of course not the non-zero character of the rate
of change of L, that is relevant but rather that of C,,,, contracted with the functions of
r or k in (6-34) or (6-25). In other words, (6-34) and (6-35) alone contain the essential
information about the rate of change of the asymptotic forms of the correlation and spectrum

functions.

7. THE FINAL PERIOD OF DECAY

Having established the general form of the spectrum tensor for small wave-numbers, we
can proceed to determine the spectrum tensor for arbitrary values of k in the final period of
decay, using the customary method (see Batchelor 1953). The assumption underlying a dis-
cussion of the ‘final period of decay’ is that when the time of decay is sufficiently large,
inertia forces become small compared with viscous forces, and the decay of the turbulence

is described by the linear equation
Ju

=V, ' (7-1
at

This assumption was regarded as intuitively plausible when it was first made, and that is
still our view of it. The changes made necessary by the developments reported herein lie
in the deduction of the consequences of equation (7-1).

It follows from (7-1) that

‘?Effa_(tf’_@ — VIR, (r, ), (7-2)
or equivalently, o0, a(;{ l) — _oukod, (K, 1), (7-3)
of which the solution is D, (k, 1) =D (k, 7,) e~ 2r-), - (7-4)

where #, is a virtual origin for the final period of decay. As ¢—¢,— o0, the exponential factor
becomes very small for all except small values of £, and the asymptotic form (as ¢—#,— c0)
is obtained by replacing ®;(k, 4,) in (7-4) by its leading term when £ is small. This leading
term has been found to be of order £2, with a form given by (5:32) (the remainder of ®;(k)
being of order £%In k). Hence, as t—f,— o0,

D06, )~ 3 Cpgmn (35 —"2) (5, — 50) b, 1, =200, (7:5)
The tensor coefficient C,,,,, is expressed in terms of the fourth integral moment of the
vorticity covariance by (5:25) and in terms of the second integral moment of R;(r) by (5-27).
During the final period of decay, when (7-1) is valid, C},,,, is constant (as may be seen by
comparing the asymptotic forms of the two sides of (7-4) as k—0), but at earlier stages of
the decay C,,,,, is not constant, as indicated by equation (6-35). Thus in the above solution
for ®,(k, ), C,,,., must be regarded as a constant coefficient whose value is determined, in
a comphcated way, by the characteristics of the mechanism producing the turbulence and
by the subsequent decay; the value of C, g in the final period is beyond the scope of
theoretical prediction at the moment.
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Corresponding to (7-5), we have, as t—#;— oo,

Ry(, )~ [ 153 Coam( B kk’; ) (3 —k;:;‘l)/c , eler-2H0-0 dk

4120%(3 v2_ aa; ) (3 Vz_arf;q) arj‘;rn J(l——c;:fk r) —2vk2(t—to)dkz7.6)

l

where a term independent of r has been added to the integrand in order to make the
integral in (7-6) convergent. The 1ntegral can be evaluated by elementary methods, whence
it is found that, as —¢,— oo,

(t—1,) ‘92) 2 0 ) 9 .[—2 3 i) :I
sz<r, t) [ ] Cpqmn( 0riarp (8qu arjarq armarn C';l/ +7T (y+ 2y Cl‘f?/ b

(7-7)

SOCIETY

where y = r/[8v(t—#))]} and erfy = 2/J7rfy e ¥dx.
0
The expression (7-7) is of the form
| [v(¢—t,)]7% x function of r/[8v(¢—7,)]*.

»

OF

so that the mean-square of each component of the velocity diminishes as [v(t—%,)] % in the
final period of decay, as was predicted by the earlier investigations. This prediction is of
course a direct consequence of the spectrum tensor being of the second degree in k when £ is
small. The explicit expression for the energy tensor #u; in the final period is most readily
found by retuming to (7:5): '

. kik, e
ity = By(0,) = 3 Cyp (8~ 582) (5~ 250) b, b, e i

= g;r} [V(t_ tO)]—% Cpqmn[il’,azp 8jq an —'Tl—(azpaqun + 8 8pmn) =+ 1 Osazjﬁqmn] (7.8)

The expression (7-7) retains the power-law form at large values of 7 that has been shown
to be characteristic of the correlation tensor at earlier stages of the decay. For the expression
within square brackets on which the derivatives operate can be written as

1 1
3 il L — —
m (y—|—2y)+|:e v (y+2y) (erfy 1):|,

of which the second term is exponentially small when y is large and the first term gives rise
to the correct asymptotic (as r— c0) form already given in (5-26). It will be noted that the
vorticity covariance w;)} is exponentially small at large values of 7 in the final period of decay.

As a further check on the accuracy of the work, one may note that if for some special
reason R,;(r) is of smaller order than r=5 when ris large* (as would be the case if the spectrum
tensor were analytic in k) (7-7) reduces to the simple form obtained in earlier papers. For
in these circumstances we have

zjmn ( imp ]nq + einp ejmq) Al[)q’ : (7'9)

* This assumption is kinematically permissible at any instant, and in the final period of decay it would
remain true at all subsequent instants since the effects of inertia and pressure forces are then negligible.

SOCIETY

OF
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according to the formulae in appendix B (M,, being an undetermined tensor, symmetrical
in p and ¢); then, from (5-27),

C

pgmn —
so that (7-7) becomes

2
=5 2 [8v(t—t)] Lijun, aa erBma), (7-10)

~L

pgmn - tETMS DOt contributing to (7-7),

which is identical with the expression previously thought to be correct (compare with
equations (5.4.6) and (5.3.16) of Batchelor, 1953). Equation (7:10) (together with (7-9))
has the specially simple feature that, as ¢t —#,— o0,

£ JR r,! ~—-/ 8y(t—1 %L e~ TY8(t~t)
0
= LlR (r t):] 72/8::(,:—:0); . (7.11)

that is, the lon:gitudinal correlation coefficient has a Gaussian form which is independent
of the direction of the separation r. The more general expression (7-7) does not seem to have
any such simple property.

It seems, then, that the only useful prediction about the final period of decay that can
be made on the basis of the present work is that the mean-square of each component of the
velocity diminishes as (¢—#,)~%. No simple results about the forms of the spectrum and
correlation tensors have emerged. These forms have been found explicitly, but the presence
of an unknown numerical tensor of fourth order makes difficult any comparison with
measurements. It is not possible to relate the energy tensor (7-8) to conditions at the initial
instant of generation of the homogeneous turbulence, so that, in particular, there is no proof
that anisotropy of the mechanism generating the turbulence requires anisotropy of the
turbulence in the final period. Unless we have overlooked some deduction, conditions in
the final period are a good deal less simple than has hitherto been supposed.

The measurements of turbulence at an advanced stage of decay that have been made
(Batchelor & Townsend 1948, Batchelor & Stewart 1950) are already known to agree with
the prediction that the energy decays as (¢—t,)~¥; this provides welcome support for our
analysis, and for the basic hypothesis of §3, although with such a complicated situation it is
difficult to be sure that we have not reached the right result for the wrong reason. The
measurements have also established, beyond question, that the turbulence behind a grid of
bars is markedly anisotropic in the final period,* the mean-square of the downstream com-
ponent of velocity being about 50 9, greater than that of either cross-stream component.
A further experimental result is that the longitudinal correlation coefficient has a form that
is represented approximately by exp [ —72/8v(¢—,)] (see figure 4 of Batchelor & Townsend
1948). These latter two results were believed to be explained quite well by the earlier

* A related observation (Batchelor & Stewart 1950) is that for a grid consisting of one set of parallel bars,
the lateral correlation coefficient for large values of the separation r is not isotropic during the initial period

of decay.
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theoretical work, and it is disconcerting that the present more extensive analysis cannot do
as well. A suggestion that we put forward tentatively to account for these observations is
that they may not be general and may be peculiar to cases of homogeneous turbulence
generated at relatively low Reynolds number. When the initial Reynolds number of the
turbulence is relatively small, the duration of the period of decay during which inertia forces
are not negligible is small, and the final period begins at a comparatively early stage (which
is the experimental reason for using low Reynolds numbers—the final period of decay would
not otherwise occur within the available length of the working-section of a wind tunnel).
According to our basic hypothesis of §3, the power-law asymptotic forms of the correlation
functions develop wholly as a result of the action of inertia and pressure forces, and our
suggestion is that when the duration of action of inertia forces is small the turbulence in the
final period of decay will not be very different from that which would be predicted with the
assumption of an analytic spectrum.

An alternative possibility is that all the effects of the non-analytic form of the spectrum
are small, at both low and high Reynolds numbers. We have not been able to obtain any
results that support or exclude this possibility. An examination of the point involves the very
difficult question of numerical values of the tensor integral moments (such as T ;) occurring
in the analysis.

8. THE SPECIAL CASE OF ISOTROPIC TURBULENCE

In thissection we shall record the form taken by the principal results when the turbulence
is assumed to be completely isotropic, makmg use of the usual rules concermng the forms of
isotropic tensors. :

The main result that has been obtained for homogeneous turbulence generally is the
expression (5:26) for the asymptotic form of R;(r) as r— o0. Now when the turbulence is
wholly isotropic, the numerical tensor C,,,,, which is related to the fourth integral moment
of the vorticity covariance, and which is symmetrical in / and m and in # and p, is necessarily

of the form Cumnp = 4018, B(808,p 0,58 ) (81)

where 4 and B are undetermined scalars; the asymptotic form (5-26) is then identically
zero. It was shown that the remainder was in general O(r%), so that in isotropic turbulence
R, (r) is no larger than O(r~6) when 7 is large. This result is related to the fact that the only
second-order isotropic tensor whose double curl (one with respect to 7, the other with
respect to j) vanishes—as is required of the term of order =5 in R(r), since it makes no
contribution to the vorticity covariance—is

onst ><——(22—— 1)
¢ O,y (r ?

which is not of the right order of magnitude. The longitudinal correlation coefficient of f(r),
which determines R;;(r) completely, will likewise be no larger than O(r~¢) when 7 is large.
(The above argument does not, of course, given any indication of whether the term of
order 7~¢ remains non-zero in isotropic turbulence. We have been unable to find any term
in the expressions for dR,;/0t, °R,;/0¢2, 33R,;/0#3, etc. at the initial instant that remains non-
zero when the condition of isotropy is imposed; however, neither have we been able to
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prove that such a non-zero term cannot arise. Thus the order of magnitude of /(r) at large r—
and, relatedly, of dir [7*(r)]—is still an open question, and the possibility that these two
quantities are exponentially small cannot be excluded.

It should be emphasized that the point is of theoretical interest only, since the large-
scale structure of fields of turbulence generated behind grids is known to be markedly
anisotropic. Thus, notwithstanding the remarks of the present section, it is the general
results for homogeneous turbulence that must be compared with measurements of the
turbulence behind a grid. Measured values of the longitudinal correlation coefficient
behind grids would still be expected to be asymptotically proportional to r=5.)

The fact that R;(r) is now of smaller order than =3 when  is large ensures that the second
integral moment of ,;(T) is absolutely convergent, and that the second derivative of (k)
exists and is continuous for all k, including k = 0. The asymptotic form of @ (k) when k is
small contains no singularity, and substitution of (8-1) in (5-33) gives

Oy(k) = [y (3, — ki) + O(BIn ) (8-2)

when £ is small. Moreover, since

L

ijmn = 4

Tl By(r) dr

is absolutely convergent and R;(r) is solenoidal in  and j, we have (see Appendix B)

Lijmn+ Liinj + Linjm =
This, together with the isotropy, requires L, to be of the form
Lijpn = 3L( =080+ 30,0, + 301, 050) (8-3)
in which we have put = u2f rif(r) dr,

where 42 represents the mean square of any component of the velocity. Then the scalars
4 and L can be related with the aid of

(72(I>,J(k) 1,
3k, 0k, Jio ™ ~ gt Lo

which requires 4= %L. (8-4)

Turning now to the dynamical results, let us consider first the relatively simple matter
of the final period of decay. We have just seen that, when the turbulence is isotropic, L, is
subject to the same kinematical conditions as it would be if all integral moments converged.
The asymptotic form of the spectrum tensor at small values of £ depends only on Z,;,,,, so
we conclude that in the final period of decay of isotropic turbulence the results previously
published are correct. That is, we have, as —#,— oo,

e L
48(2m)} [v(t—4,)]¥’
(As already remarked in §7, some measurements (Batchelor & Townsend 1948) of the
longitudinal correlation coefficient in a wind tunnel are in reasonably good agreement

f(r) ~ e—72/8v(l—lo) (85)
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with the Gaussian function given in (8:5), but this cannot be taken as confirmation of the
prediction (8:5) since the turbulence in the wind tunnel was definitely not isotropic.)
During the initial period of decay, the non-linear terms of the dynamical equation must
be taken into account, and we must consider the results obtained in §6. The pressure-
velocity mean value pu] is identically zero in isotropic turbulence, and makes no contribution
to the asymptotic form of the dynamical equation (6-1). The asymptotic form of the first
term on the right-hand side of (6-1) depends on the tensor 7};, representing the first integral

moment of u;u,u; (see (6-17)), and in isotropic turbulence we must have

Tiyjy = Té\iké\jl'i_s(a\ijb\kl"l—a\ilajk)' (86)
The general condition (6-24) then shows that the two undetermined scalars 7" and \$ are
related by 3T+28 — 0,
and in place of (6-21) we have . »
| “itlelly 5T¢9r ;01 0r; \r ( ) ‘ (8-7)

when 7 is large. Itwill be observed that the asymptotic form of »;u, 4} is now irrotational in
all three indices, which is wholly a consequence of isotropy and the fact that the asymptotic
form is of order r~* (as may be seen by substituting £(r) = const./r* in the known relation
between u;u,u} and the singlescalar function £(r)). Thus the significance of the irrotationality
with respect to the j-index, which was so clear in the general case—being associated with
the growth of irrotational velocity fields as a result of the action of pressure forces—is here
rather obscured.

The divergence of the asymptotic form (8-7) with respect to the k-index vanishes
identically so that in isotropic turbulence no terms of the dynamical equation (6-1) are of
order =5 when r is large. Correspondingly, none of the leading terms (of order £2) in the
dynamical equation for the spectrum tensor is non-analytic, and the relation (6-35) between
the leading terms in this latter dynamical equation reduces to

171dL
712 ds +%T:|(k23£j“kz‘kj) =0
. dL
from which we have =" 307. (8-8)

Land T arescalars defining the second integral moment of #;u} and the first integral moment
of u;u, u; respectively, and (8-8) can be rewritten in terms of the usual correlation coefficients

J(r) and k(r). We find S %J( k(s )+4r3k(r))dr

so that c%[&‘z [ dr ]| = @ttimek). (8:9)

This relation can of course be obtained directly by taking the fourth integfal moment of
the dynamical equation for the scalar function f(r), viz.

- n () 2 O )

50 VoL. 248. A.
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The practice, prior to the work of Proudman & Reid, has been to assume lim 74(r) to be

r—>0

zero, which leads to the conclusion that uzf r*f(r) dr is invariant throughout the history

of the turbulence. Proudman & Reid’s inference, from their work on turbulence with zero
fourth-order cumulants, that lim 7#k(r) is not zero and that L is not invariant, is now con-

7 —>©

firmed. Thus the parameter L occurring in the expression for the kinetic energy in the final
period of decay (see (8-5)) is not a quantity that is determined at the instant of formation
of the field of turbulence; the history of the decay also affects the value of L.

Proudman & Reid (1954) established that, for a field of turbulence in which fourth-order
cumulants of the velocity are zero, d7/dt<0, i.e.

J— 2 __po
g-t[(uz)%}i_rir%(r) >0, gp[uz fo Aflr) dr | >o. (8-10)
Measurements of £(r) and f{r) suggest that they are everywhere negative and positive
respectively (although the data for large values of 7 is incomplete), and the interpretation
of these inequalities may be simply that the variation of the quantities within square

brackets is dominated by the decrease of #? as ¢ increases. It seems that the quantity
z-ﬁf r*f(r) dr decreases (at a diminishing rate) during the stages of the decay in which
0

inertia forces are not negligible, and is constant during the final period of the decay.

APPENDIX A. EVALUATION OF SOME ISOTROPIC SURFACE INTEGRALS

In the analysis of §§5 and 6, there occur a number of isotropic surface integrals, all of
which are particular cases of the two integrals

\Y

d4r
ijkimn zf il 3r-ar,ar o, rdQ(r) (A1)

and Tysm = (117 5303y (7)), (A2)

where dQ(r) is the solid angle subtended at the origin by a surface element at the point r,
and the integration is over the surface of a sphere. The purpose of this appendix is to
evaluate these two integrals.

In view of the symmetry properties of the integrals, it is convenient to introduce special
symbols for completely symmetric isotropic tensors of order up to six. The second-order
isotropic tensor is, of course, the unit tensor dj;. For the fourth- and sixth-order cases, we

define D T I S (A3)
and 6\ij klmn — 6\ 3klmn azk b\ﬂmn + azl 3jkmn + b\zm 6\]kln + 6\m b\jklm> (A 4)

which are clearly symmetric in all their indices.
Considering first the integral (A1), the symmetry in z, j and in £, /, m, n enables the
integral to be written in the form

S

ijklmn

= 50,

ijklmn

88,8y, (A5)

mn?
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where S and $’ are scalar numbers. Then, since r is a bi-harmonic function, the contracted

form S, vanishes, and (A 5) gives
‘ 0 = 3580, +155'3;. (A 6)
A further relation between S and S’ follows from a consideration of the contracted form
Sz‘jijmn' For, %r
Sysmn = | (—2) (=1) 5,77 rdQr)
) G0y — 167
—2{(8,,— "2 ) a0(r) =574,

where the first step follows from the rules for differentiating homogeneous functions of
degree —2 and —1. Hence, from (A 5),

O B = 3588,y 58
which, combined with (A 6), gives
87
Sijkimn = 5 [#sisimn— 50y Oxtmn] ‘ (A7)

The symmetry of the second integral (A 2) again enables the integral to be expressed in
terms of two scalars; this time in the form

Titimn = TOamn+ T (O Orsin 01 Oomijie + O Ouijie) - (A8)

The values of the scalars 7"and 7" are then most easily obtained from the result that, when
the indices £ and / are contracted, the integrals (A 1) and (A 2) are proportional. Thus,

9% (1
Tjthmn = —3 |1:7; o ar (;) rd€)(r)

—3
2 Sz’jkkmm

so that, from (A7) and (A8),
(1T+2T") 4,

ijmn

127
? [&'jmn - %b\zj 3mn] .
This last equation determines both 7"and 7", and on substituting these values in (A 8) we

obtain Titimm = 471 40tz + 2O Sniie - O O+ O i) 1

+ 57780 = —

ArPENDIX B. THE FORM OF INTEGRAL MOMENTS OF SOLENOIDAL TENSORS
The kinematical analysis in §§ 5 and 6 involves a number of integral moments of correla-
tion tensors which satisfy a solenoidal condition. In this appendix, we derive the general
explicit solution for the tensorial form of such integral moments.
The first problem is to obtain the form of the Nth-order tensor

Fi..., = |1x7...(N—1 factors) ... 7, 4;(r) dr, ’ (B1)

where 4;(r) is a solenoidal vector, and the integral is supposed to be absolutely convergent.
This tensor therefore satisfies the conditions

F,,.., is symmetric in £, /, ..., p, (B2)

and FupptFy i+ F. pipt .. (N terms) = 0, (B3)

J
50-2
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where (B3) follows by the same argument as that which led to (5-23). Now a form of
Fy,.., that satisfies these two conditions is

Fou.,= ejquql...p+€jlq Gy.ppt - (N—1 terms), (B4)

J
where G, is symmetric in /, ..., p. The tensor G, , is also arbitrary to the extent of an
additive tensor of the form

Oyt p+0mH,. py+...(N—2 terms), (B5)

where H,, _, is symmetric in m, ..., p, since the contribution of (B5) to the right side of (B4)
vanishes identically.* The proof that (B 4) represents the general solution of the conditions
(B2) and (B 3) then rests upon the demonstration that the number of independent com-
ponents in a general tensor satisfying these conditions is the same as that in the symmetric
tensor G,;.. ,, allowing for the arbitrariness represented by (B 5).

Let D, denote the number of combinations of # things chosen from three varieties, with
repetitions allowed; so that D, = 1(n+1) (n+2).

The number of independent components in an Nth-order tensor with the symmetry
property (B2) is 3D, _, = 3N(N+1),

and the condition (B3) imposes a further D, relation between these components. Hence
the number of independent components in the general solution for F, ., is

BN(N+1)—L(N-+1) (N+2) = N2—1. (B6)

Similarly, the tensors G, and H, , have 3Dy _, and Dy_; independent components,
respectively, so that the number of independent components in the solution (B4) is

H(N—1) N—}(N—2) (N—1) = N>—1,
in agreement with (B 6). The solution (B 4) is therefore general, and, with a suitable choice
of H, ,, we may put G 0 (B7)

qgm..-p

The validity of the above results is clearly not affected significantly by the replacement
of the vector 4;(r) by a tensor of any order that is solenoidal in the j-index; the only
necessary change being the purely formal addition of extra indices to the tensor G, ,. If,
however, there are further symmetry conditions involving the indices of the tensor that
replaces 4,(r), then a further reduction of the result (B4) follows. The only such case
occurring in the analysis of the present paper is that in which 4,(r) is replaced by a second-
order solenoidal tensor 4,;(r) satisfying the condition

4(r) = 4;(—r) (B8)
(e.g. the fourth integral moment of the vorticity covariance), and this is discussed below.
Writing

u

Fin..p =it -.. (N—1 factors) ...7,4;(r) dr, (B9)

where N is odd, the condition (B 8) gives
Fjp = Fipa..ps (B10)

t

* The result corresponds to the fact that a solenoidal vector may be written as the curl of a vector
potential which is arbitrary to the extent of an additive gradient.
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and hence, from (B4),

Ejkl--vp = jkq qul~'~j7+6jlq qu-npk_l— .. .(.N""‘ 1 tCrmS)

= 6ikq qul...p +€z’l{1 Gjl]u-jzk+ e (N"‘ 1 terms) . (B 1 1)
Multiplying (B11) by ¢, and putting
Gz‘qqm~--ﬁ =0

(which is permissible by (B7)), we get

2Girlm.--jz + (N'— 2) Gz'rlm-.-p = Yirlmop ™ 31'7 Gsslm-.-p ,
+ (N'— 2) Gz’rlm--.p + Z [ - Glrz‘m.--jz -+ 317‘ Gssz‘m--\-p - air Gsslm---p] .
p

erm. [, m, <.y p

Contraction of the indices ¢ and 7 in this last equation yields the result

Giilm...p = 09 ) (B 12)
so that the equation becomes > Gu.,=0. (B13)
perm.i, [, ..., p

Thus the tensor G, ,, introduced in (B11), also satisfies a condition of the type (B 3), and
the general solution of (B 13) may be written in the form

Gz’rlm---_b = €5 Krsm-up +€z‘ms Krs-.~pl+ T (N—"Q terms), (B 14)

where the (N—1)th-order tensor K,,,. ., is symmetric in m, ..., p. The result (B12) yields
the further property that K,

rsm...p 18 Symmetric in 7, 5; to which we may also add the condition
Krssn...p =0,

‘in a manner analogous to (B7). Interms of K., ,,
(B11) and (B14)

Fitim..p = > > i Kogm.py [(N—1) (N—2) terms]

Y
perm. k, 1, m, ..., p PETMLL My o0y p

the explicit solution for F;,,.. , is, from

Finally, it should be noted that the absolute convergence of the integral moment is
essential for the validity of the results of this appendix. For moments that are only con-
ditionally convergent, like L, the zero on the right-hand side of the solenoidal condition
(B 3) must be replaced by a surface integral whose value is determined by the local behaviour
of the integrand at large values of . In such cases, a ‘particular’ solution must be added to
the ‘complementary’ solutions derived above.
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